RECEIVED 2004 SEP 10 AMII: 26

T.R.A. DOCKET ROOM

TENNESSEE REGULATORY AUTHORITY

STATE OF MISSOURI

COUNTY OF SAINT LOUIS

BEFORE ME, the undersigned authority, duly commissioned and qualified in and for the State and County aforesaid, personally came and appeared Dr. Edward L. Spitznagel, Jr., who, being by me first duly sworn deposed and said that:

<u>Ir Elwad L. Spitmagel</u>, Jr. Edward L. Spitznagel, Jr.

Sworn to and subscribed before me this 7th day of September 2004.

Notary Public

My commission expires Joh

MARY J WITHINGTON Notary Public - State of Missouri St. Louis County

My Commission Expires February 22, 2008

2		OF
3		EDWARD L. SPITZNAGEL, JR.
4		
5	1. Q.	Please state your name, business address, and employer.
6		
7	Α.	My name is Edward L. Spitznagel, Jr., and my
8		business address is Campus Box 1146, One
9		Brookings Drive, St Louis, Missouri 63130. I am
10		employed by Washington University.
11		
12	2. Q.	What is your present position?
13		
14	Α.	I am Professor of Mathematics in the College of
15		Arts and Sciences at Washington University. I
16		also hold a joint appointment in the Division of
17		Biostatistics of the Washington University School
18		of Medicine.
19		
20	3. Q.	Please review your educational background and work
21		experience.
22		
23	Α.	I hold a Bachelor of Science, summa cum laude, ın
24		mathematics, awarded in 1962 by Xavier University,
25		Cincinnati, Ohio. I hold a Master of Science
26		(1963) and Ph D (1965) in mathematics awarded by

TESTIMONY

1 the University of Chicago. I have served on the 2 Faculty of Arts and Sciences of Washington 3 University since 1969. I have held a joint 4 appointment in the Division of Biostatistics 5 since 1978. From 1965 to 1969 I was on the faculty of Northwestern University. 6 7 Attached to my testimony is Appendix A, which 8 9 provides a more detailed listing of my education and 10 qualifications in the area of mathematics and statistics. 11 12 4. Q. What is the purpose of your testimony in this case? 13 14 I have been employed by Tennessee American Water Company to make weather-normalized predictions of 15 16 water utilization for the period January 2005 to 17 December 2005. 18 19 5. Q. What is weather normalization? 20 21 From one year to the next, variations in temperature 22 and precipitation lead to changes in water consumption. 23 More water will generally be used during hotter, drier 24 periods. The regulatory question is how to reflect 25 those weather-related differences when setting rates.

26

For ratemaking purposes, revenues need to be set at as "normal" a level as possible, factoring out the potential or actual results of unusual weather conditions. This can be accomplished by building statistical models that predict water utilization from meteorological data and other possible predictors. An estimate of future utilization can then be made by using a long-term average of meteorological data (since there is no better way to forecast next year's weather than as an average) and known values of the other predictors.

13 6. Q. What are examples of these other, non-meteorological predictors?

A. One is the year itself. Due to gradual introduction of water-conserving plumbing fixtures and appliances, use of water appears to be gradually declining over time.

Another is the month of the year. While water utilization increases during the warmer, drier summer months, analysis of variance shows that month as a categorical variable is a powerful predictor even after temperature and moisture have been included in the model.

7. Q. What model for water utilization did you employ?

In a previous case before the Public Service Commission

of the Commonwealth of Kentucky (1997), I screened a

large number of candidate predictors by examining data

from sixteen different operating companies in five states,

Kentucky, Missouri, Ohio, Tennessee, and Virginia.

Tennessee American Water Company was one of these sixteen

companies.

I used as candidate predictors only those variables that correlated consistently with utilization for most or all of these operating companies.

I then fitted the surviving candidates in a multivariate model to predict utilization. I found that calendar month was a strong predictor even in the presence of heat and moisture variables. Therefore I included month as a categorical variable. With month included, I tested drought severity index, temperature, and calendar year as potential numeric predictors. I found that temperature was not a useful predictor in the presence of the other variables, so from that point onward, I did not use it.

For the months of January through April, there was no evidence that moisture predicted utilization. For the months of May

through December, there was evidence of moisture predicting utilization, being a weak predictor in the months of May, June, November, and December and a strong predictor for the months of July through October.

Since only a deficit of moisture should lead to increased water utilization, I tested truncated versions of the Palmer Drought Severity Index as predictors, finding that truncation at 0 yielded a larger R-square than the non-truncated index and the index truncated at all other levels.

Month was a very strong predictor, both as a main effect and interacting with the truncated drought severity index. Because of this, I estimated twelve separate predictive models, one for each month of the year.

For the present case I used those same predictors to estimate Tennessee American Water Company utilization by fitting them to monthly TAWC consumption data from January 1994 through December 2003. The models were estimated separately for residential and commercial consumption. The coefficient estimates can be found in Appendix B.

24 8. Q. Not all of the coefficient estimates are statistically significant. Is this a problem?

A. No. The candidate variables were obtained as described above, by examining data from 16 different water companies, selecting those that correlated with utilization over most or all of those companies. Once those variables were selected, the resulting estimates based on them will be unbiased. If they are subject to further selection based on statistical signifiance, there is a chance that a small amount of bias

could result.

9. Q. Once you had estimated the coefficients in these monthly models, how did you project utilization for January 2005 through December 2005?

I put the coefficients from the monthly regressions into
.
Excel spreadsheets, one for residential customers, and the
other for commercial customers. I calculated the mean
truncated Palmer Drought Severity Index for each of the
twelve calendar months over the 30 year period from January
1974 to December 2003 and inserted those values into the
spreadsheets.

I then projected an average daily utilization for each month. Once these twelve monthly projections were computed, I calculated average daily utilization for the year by taking an average weighted by the number of days in each calendar month, counting February as having 28 days since 2003 is not

```
a leap year.
3
           These spreadsheets are given in Appendix C.
4
    10. Q. What are your projections of daily utilization under
5
6
           average weather for the two customer classes?
7
        A. For residential customers: 155.14 gallons / customer / day
8
9
           For commercial customers: 1023.67 gallons / customer / day
10
    11. Q. Does this conclude your testimony?
11
12
13
        A. Yes, it does.
```

Edward L. Spitznagel, Jr.

Born: Cincinnati, Ohio, September 4, 1941.

Education:

Xavier University, 1959-1962 Awarded Bachelor of Science Degree (Summa Cum Laude), 1962

University of Chicago, 1962-1965 Awarded Master of Science Degree, 1963 Awarded Ph.D. in Mathematics, 1965

Scholarships and Fellowships:

Xavier University, 1959-1962 Honorary Woodrow Wilson Fellow, 1962-1963 National Science Foundation Fellow, 1962-1965

Positions:

Assistant Professor of Mathematics Northwestern University, 1965-1969

Associate Professor of Mathematics Washington University, 1969-1980

Professor of Mathematics Washington University, 1980-present

Joint appointment, Division of Biostatistics, Washington University School of Medicine, 1978-present

Consulting Experience:

Litton Industries (USACDCEC, Fort Ord, CA) Price Waterhouse (Advanced Auditing Methods, NY) Mallinckrodt, Inc. St. Louis County Juvenile Court Monsanto Company American Red Cross Carboline Corporation Regional Justice Information Service Harris-Stowe State College Equal Employment Opportunity Commission American Optometric Association Petrolite Corporation U.S Army Atmospheric Sciences Laboratory (White Sands, NM) St Louis County Water Company Gateway Medical Research, Inc. MasterCard Missouri-American Water Company Capital City Water Company Kentucky-American Water Company Anheuser-Busch, Inc. Santa Clara County Mental Health Administration (San Jose, CA) and many law firms

Publications

- 1 New impedance method for determining viscoelastic constants. Rev. Sci. Inst. 35, 582-586 (1964) (With Potzick and Catanese)
- 2. Hall subgroups of certain families of finite groups Math. Z. 97, 259-290 (1967)
- 3. A new look at the fifteen puzzle. Math. Mag. 40, 171-174 (1967).
- 4 Terminality of the maximal unipotent subgroups of Chevalley groups Math. Z. 103, 112-116 (1968).
- 5. Note on the alternating group. Amer. Math. Monthly 75, 68-69 (1968)
- 6 A computer study of the orders of finite simple groups Math Comp 22, 669-671 (1968). (With Szygenda)
- 7. Density of finite simple group orders. Math. Z. 106, 175-177 (1968). (With Dornhoff)
- 8 An experimental approach in the teaching of probability. The Mathematics Teacher 61, 565-568 (1968).
- 9. Structure and terminality of the maximal unipotent subgroups of Steinberg groups. Illinois J. Math. 13, 400-405 (1969)
- 10. Poisson integrals: rigor or mortis? Amer. J. Phys. 38, 266-267 (1970) (With Hart)
- 11 An elementary proof that primes are scarce. Amer Math. Monthly 77, 396-397 (1970)
- 12 Selected topics in mathematics. Holt, Rinehart and Winston (1971).
- 13. Lognormal model for ascorbic acid requirements in man. Bioscience 21, 981-984 (1971).
- 14 The uses of computing in a modernized probability and statistics course. Proceedings of the Second Annual Conference on Computers in the Undergraduate Curricula, 217-222 (1971).
- 15. Properties of a game based on Euclid's algorithm. Math. Mag. 46, 87-92 (1973)
- 16 Use of a questionnaire-oriented research project in teaching undergraduate statistics. Proceedings of the Fourth Annual Conference on Computers in the Undergraduate Curricula, 352-357 (1973).
- 17 An inexpensive computer assist in teaching large enrollment mathematics courses Proceedings of Symposia in Applied Mathematics (American Mathematical Society) 20, 175-179 (1974).
- 18 Use of SAS in teaching a first course in statistics. Proceedings of the First Annual Conference of SAS Users Group International, 85-89 (1976).
- 19 Maintenance and analysis of anesthesia/surgery data with SAS. Proceedings of the Third Annual Conference of SAS Users Group International, 74-76 (1978). (With Owens)
- 20. K W.I C. indexes with SAS Proceedings of the Third Annual Conference of SAS Users Group International, 267-270 (1978)

- 21. The use of loglinear and multivariate logistic models to assess the associations between HLA antigen responses and disease. Proceedings of the 1978 American Statistical Association Section on Statistical Computing, 271-275 (1978) (With Miller and Kass)
- 22. ASA physical status classifications: a study of consistency of ratings Anesthesiology 49, 239-243 (1978) (With Owens and Felts)
- 23. Interfacing SAS with Mark IV Proceedings of the Fourth Annual Conference of SAS Users Group International, 41-44 (1979)
- 24 SAS as a management tool for course registration and grading. Proceedings of the Fourth Annual Conference of SAS Users Group International, 158-161 (1979).
- 25. Tally of ASA classification responses Anesthesiology 51, 181 (1979). (With Owens and Felts)
- 26 Outcome studies of anesthesia Washington University. in *Health Care Delivery In Anesthesia*, edited by R. A. Hirsh, W. H. Forrest, Jr., F. K. Orkin, and H. Wollman. George F. Stickley Co. 67-72 (1980) (With Owens)
- 27. Morphological and biochemical studies in the development of cholinergic properties in cultured sympathetic neurons I Correlative changes in choline acetyltransferase and synaptic vesicle cytochemistry J Cell Biology 84, 680-691 (1980). (With Johnson et al.)
- 28. Letter to the editor regarding the Mahoney, Bird and Cooke article Annual clinical examination the best available screening test for breast cancer (N. Engl. J. Med. 301, 315-316 (1979)). New England Journal of Medicine 302, 60 (1980). (With Gohagan et. al.)
- 29. Anesthetic side effects and complications An overview. in Anesthetic Side Effects and Complications. Seeking, Finding, and Treating, edited by W. D. Owens. Little, Brown and Company. 1-9 (1980). (With Owens)
- 30. A SAS macro for computing the kappa statistic to assess reliability. Proceedings of the Fifth Annual Conference of SAS Users Group International, 159-163 (1980). (With Rice and Helzer)
- 31. Computer generated repeatable examinations Proceedings of the Fifth Annual Conference of SAS Users Group International, 438-442 (1980)
- 32. Shaded map reports Proceedings of the Fifth Annual Conference of SAS Users Group International, 475-481 (1980).
- 33. Individual and combined effectiveness of palpation, thermography, and mammography in breast cancer screening. *Preventive Medicine* **9**, 713-721 (1980) (With Gohagan et al.)
- 34. Effect of pedaling rate on submaximal exercise responses of competitive cyclists. J Appl Physiol 51, 447-451 (1981) (With Hagberg et al.)
- 35. Simulation of population genetics models with SAS. Proceedings of the Sixth Annual Conference of SAS Users Group International, 605-606 (1981)
- 36. Optimal strategies for breast cancer detection. in Systems Science in Health Care, edited by C. Tilquin Pergamon Press 321-330 (1981) (With Gohagan et al.)

- 37. Computer graphics in selection of screening strategies. Proceedings of the Seventh Annual Conference of SAS Users Group International, 167-170 (1982) (With Gohagan)
- 38. Optimal stratified sampling, with an application to auditing. Proceedings of the Seventh Annual Conference of SAS Users Group International, 415-417 (1982).
- 39. Early Detection of Breast Cancer. Risk, Detection Procedures, and Therapeutic Implications Praeger Publishers (1982). (With Gohagan et al.)
- 40. Plasma epinephrine and norepinephrine levels during anesthesia enflurane- N_2O-O_2 compared with fentanyl- N_2O-O_2 Anesth. Anal. 61, 366-370 (1982) (With Brown et al.)
- 41. Heterogeneity in schizophrenia a cluster-analytic approach. Psychiat. R. 8, 1-12 (1983). (With Farmer and McGuffin)
- 42. SAS methods for balanced repeated replications Proceedings of the Eighth Annual Conference of SAS Users Group International, 844-847 (1983).
- 43. Breast self examination as a screening procedure. Third International Conference on System Science in Health Care, 455-458 (1984). (With Gohagan et al.)
- 44. ROC analysis of mammography alone and in combination with clinical palpation for breast screening. Third International Conference on System Science in Health Care, 463-466 (1984) (With Gohagan et al.)
- 45 Experimental design for the evaluation of nuclear magnetic resonance imaging in clinical medicine. Third International Conference on System Science in Health Care, 881-884 (1984). (With Gohagan et al.)
- 46. Graphic representation of logistic regression models. Proceedings of the Ninth Annual Conference of SAS Users Group International, 870-873 (1984). (With Gohagan et al.)
- 47. Utilization patterns of health maintenance organization disenrollees. *Medical Care* 22, 827-833 (1984). (With Griffith and Baloff)
- 48 ROC analysis of mammography and palpation for breast screening. *Invest Radiol* 19, 587-592 (1984). (With Gohagan et al.)
- 49. A proposed solution to the base rate problem in the kappa statistic. Arch Gen Psychiatry 42, 725-728 (1985) (With Helzer)
- 50. A comparison of clinical and Diagnostic Interview Schedule diagnoses: Physician reexamination of lay-interviewed cases in the general population. *Arch Gen Psychiatry* 42, 657-666 (1985). (With Helzer et al.)
- 51 A mouse embryo culture system for quality control testing of human in vitro fertilization and embryo transfer media and fetal cord sera Gamete Research 11, 411-419 (1985) (With Cheung et al.)
- 52 Comparison of variance estimation methods for complex sample designs under extreme conditions Proceedings of the Tenth Annual Conference of SAS Users Group International, 1084-1088 (1985)

- 53. Sampling the household population in Epidemiologic Field Methods in Psychiatry: The NIMH Epidemiologic Catchment Area Program, edited by W. Eaton and L. Kessler. Academic Press. 23-48 (1985). (With Holzer et al.)
- 54. Sampling: The institutional survey. in Epidemiologic Field Methods in Psychiatry: The NIMH Epidemiologic Catchment Area Program, edited by W Eaton and L. Kessler. Academic Press. 49-66 (1985) (With Leaf et al.)
- 55. Statistical methods for estimating and extrapolating disease prevalence and incidence rates from a multisite study. in *Epidemiologic Field Methods in Psychiatry*. The NIMH Epidemiologic Catchment Area Program, edited by W. Eaton and L. Kessler. Academic Press. 351-373 (1985). (With Manton et al.)
- 56 Staging parameters for cancers of the head and neck: a multi-factorial analysis. Laryngoscope 95, 1378-1381 (1985) (With Jacobs and Sessions)
- 57. Radiogenic breast cancer effects of mammographic screening Journal of the National Cancer Institute 77, 71-76 (1986). (With Gohagan et al.)
- 58. Difficult-to-recruit respondents and their effect on prevalence estimates in an epidemiologic survey American Journal of Epidemiology 125, 329-339 (1987). (With Cottler et al.)
- 59. Left globus pallidus abnormality in never-medicated patients with schizophrenia. *Proc Natl Acad Sci USA* 84, 561-563 (1987). (With Early et al.)
- 60. Multispectral analysis of MR images of the breast. Radiology 163, 703-707 (1987) (With Gohagan et al.)
- 61. The predictive validity of lay Diagnostic Interview Schedule diagnoses in the general population Arch Gen Psychiatry 44, 1069-1077 (1987). (With Helzer and McEvoy)
- 62. The effect of medication compliance on the control of hypertension. Journal of General Internal Medicine 2, 298-305 (1987). (With Eisen et al.)
- 63. Teaching biostatistics with an emphasis on reading the medical literature Proceedings of the 1987 American Statistical Association Section on Statistical Education, 111-115 (1987) (With Schechtman)
- 64. Evidence that the biliary migrating myoelectric complex (MMC) is preserved after feeding. Gastroenterology 95, 894 (1988) (With Zenilman et al.)
- 65 Scheduling mammograms for asymptomatic women Preventive Medicine 17, 155-172 (1988). (With Gohagan et al.)
- 66 Increased fentanyl requirement in patients receiving long-term anticonvulsant therapy. Anesthesiology Review 15, 54-55 (1988). (With Tempelhoff and Modica)
- 67. Accelerated train of four recovery from atracurium in patients receiving long-term anticonvulsant therapy. Anesthesiology Review 15, 55-56 (1988) (With Modica and Tempelhoff)
- 68. Antimicrobial misuse in patients with positive blood cultures. The American Journal of Medicine 87, 253-259 (1989) (With Dunagan et al.)

- 69. Exclusion of chromosomal mosaicism in amniotic-fluid cultures efficacy of insitu versus flask techniques Prenatal Diagnosis 10, 41-57 (1990) (With Cheung et al.)
- 70. Anticonvulsant therapy increases fentanyl requirements during anesthesia for craniotomy. Can J Anaesth 37, 327-332 (1990). (With Tempelhoff and Modica)
- 71. Nitrous oxide, nausea, and vomiting after outpatient gynecologic surgery J Clin Anesth 2, 168-171 (1990). (With Felts and Poler)
- 72 The relation of ulcerative colitis to psychiatric factors—a review of findings and methods. Am J Psychiatry 147, 974-981 (1990)—(With North et al.)
- 73. Clinical classification and staging for primary malignancies of the maxillary antrum. Laryngoscope 100, 1106-1111 (1990) (With Zamora et al.)
- 74. Time-series analysis of myoelectric cycling of sphincter of Oddi: evidence of cycling during fed state. Am J Physiology 259, 511-517 (1990). (With Zenilman et al.)
- 75. The effect of prescribed daily dose frequency on patient medication compliance. Arch Intern Med 150, 1881-1884 (1990). (With Eisen et al.)
- 76. Resistance to atracurium-induced neuromuscular blockade in patients with intractable seizure disorders treated with anticonvulsants. *Anesthesia and Analgesia* 71, 665-669 (1990). (With Tempelhoff et al.)
- 77. California Mental Health Needs 1, 1-182. California Department of Mental Health (1990). (With Meinhardt and Jerrell).
- 78. California Mental Health Needs 2, 1-467. California Department of Mental Health (1990). (With Meinhardt and Jerrell).
- 79. Comments on psychiatric aspects of ulcerative colitis reply. Am J Psychiatry 148, 688 (1991) (With North et al.)
- 80. Do life events or depression exacerbate inflammatory bowel disease? Annals of Internal Medicine 114, 381-386 (1991). (With North et al.)
- 81. Antibiotic misuse in two clinical situations positive blood culture and administration of aminoglycosides. Reviews of Infectious Diseases 13, 405-412 (1991). (With Dunagan et al.)
- 82. Agreement between DSM-III and III-R substance use disorders Drug and Alcohol Dependence 29, 17-25 (1991) (With Cottler et al.)
- 83. New methods in cross-cultural psychiatry. Psychiatric illness in Taiwan and the United States. Am J Psychiatry 148, 1697-1704 (1991). (With Compton et al.)
- 84 Surgical pathology of cancer of the oral cavity and oropharynx Laryngoscope 101, 1175-1197 (1991). (With Sessions et al.)
- 85. Sensitivity of chromosomal mosaicism detected by different tissue-culture methods *Prenatal Diagnosis* 11, 927-928 (1991) (With Cheung et al.)

- 86. Are hard-to-interview street dwellers needed in assessing psychiatric disorders in homeless men? International Journal of Methods in Psychiatric Research 1, 69-78 (1991) (With Smith and North)
- 87. Gender differences in sociopathy and somatization in men and women with homosexual experience. International Journal of Methods in Psychiatric Research 1, 89-99 (1991). (With North et al.)
- 88 Anticoagulant effects of nonionic versus ionic contrast-media in angiography syringes. *Investigative Radiology* 27, 185 (1992).
- 89. Posttraumatic stress disorder among substance users from the general population. Am J Psychiatry 149, 664-670 (1992). (With Cottler et al.)
- 90. A systematic study of mental illness, substance abuse, and treatment in 600 homeless men. Annals of Clinical Psychiatry 4, 111-120 (1992). (With Smith and North)
- 91 Clinical staging for primary malignancies of the supraglottic larynx. Laryngoscope 103, 69-77 (1993). (With Zamora et al.)
- 92. Symptomatic cytomegalovirus infection in renal transplant recipients given either Minnesota antilymphoblast globulin (MALG) or OKT3 for rejection prophylaxis. American Journal of Kidney Diseases 21, 196-201 (1993). (With Bailey et al.)
- 93 Alcohol, drugs, and psychiatric comorbidity among homeless women. J Clin Psychiatry 54, 82-87 (1993). (With Smith and North)
- 94. Is antisocial personality a valid diagnosis among the homeless? Am J Psychiatry 150, 578-583 (1993). (With North and Smith)
- 95. Post-traumatic stress in survivors of three disasters. Journal of Social Behavior and Personality 8, 353-368 (1993). (With Smith and North)
- 96. Cytomegalovirus infection and pneumonitis. Am Rev Respir Dis 147, 1017-1023 (1993). (With Ettinger et al.)
- 97 Epidermoid carcinoma of the oral cavity and oropharynx validity of the current AJCC staging system and new statistical tools for the prediction of subclinical neck disease. Otolaryngology and Head and Neck Surgery 108, 225-232 (1993). (With Ghouri et al.)
- 98. Results of a rubella screening program for hospital employees: a five-year review (1968-1990) American Journal of Epidemiology 138, 756-764 (1993). (With Fraser et al.)
- 99. Subjective reports of withdrawal among cocaine users: recommendations for DSM-IV. Drug and Alcohol Dependence 33, 97-104 (1993). (With Cottler et al.)
- 100. Posttraumatic stress disorder in survivors of a mass shooting. Am J Psychiatry 151, 82-88 (1994) (With North and Smith)
- 101. Violence and the homeless: an epidemiologic study of victimization and aggression. *Journal of Traumatic Stress* 7, 95-110 (1994). (With North and Smith)
- 102. On-site PT, aPTT and platelet count: A comparison between whole blood and laboratory assays with coagulation factor analysis in patients presenting for cardiac surgery. Anesthesiology 80, 338-351 (1994) (With Despotis et al.)

- 103. Prospective evaluation and clinical utility of on-site coagulation monitoring in patients undergoing cardiac operation J Thorac Cardiovasc Surg 107, 271-279 (1994). (With Despotis et al.)
- 104. Two-compartment pharmacokinetics. Proceedings of the Fifth Annual International Conference on Technology in Collegiate Mathematics, edited by L. Lum. Addison-Wesley Publishing Company. 417-420 (1994).
- 105. Inhalant use: characteristics and predictors. American Journal on Addictions 3, 263-272 (1994) (With Compton et al.)
- 106. Prediction of occult neck disease in laryngeal cancer by means of a logistic regression statistical model. Laryngoscope 104, 1280-1284 (1994). (With Ghouri et al.)
- 107. Comparison of activated coagulation time and whole blood heparin measurements to laboratory plasma anti-Xa heparin concentration in cardiac surgical patients. *J Thorac Cardiovasc Surg* 108, 1076-1082 (1994) (With Despotis et al.)
- 108. GAP groups, algorithms, and programming (review). Notices Amer Math Soc 41, 780-782 (1994).
- 109 Prediction of subclinical neck disease in laryngeal cancer patients using a logistic regression statistical model. in Laryngeal Cancer. Proceedings of the 2nd World Congress on Laryngeal Cancer, Sydney, 20-24 February 1994, edited by R. Smee and G.P. Bridger Elsevier Science B.V. 570-573 (1994). (With Ghouri et al.)
- 110. Predictors of mortality in alcoholic women: a 20-year follow-up study. Alcoholism, Clinical and Experimental Research 18, 1177-1186 (1994) (With Smith et al.)
- 111. Improvement in user performance following development and routine use of an expert system.

 Medinfo 8, 1064-1067 (1994) (With Kahn et al.)
- 112. Exclusion of chromosomal mosaicism in amniotic fluid cultures determination of number of colonies needed for accurate analysis. *Prenatal Diagnosis* 14, 1009-1017 (1994). (With Featherstone et al.)
- 113. Adult offspring of alcoholic women as family history informants Alcoholism, Clinical and Experimental Research 18, 1354-1360 (1994). (With Smith et al.)
- 114. The impact of heparin concentration and activated clotting time monitoring on blood conservation: A prospective, randomized evaluation in patients undergoing cardiac operation J Thorac Cardiovasc Surg 110, 46-54 (1995). (With Despotis et al.)
- 115 Risk factors for a positive tuberculin skin test among employees of an urban, midwestern teaching hospital Annals of Internal Medicine 122, 580-585 (1995) (With Bailey et al.)
- 116 Predictors of mortality in alcoholic men a 20-year follow-up study Alcoholism, Clinical and Experimental Research 19, 984-991 (1995) (With Lewis et al.)
- 117. Complaints of constipation in obsessive-compulsive disorder. Annals of Clinical Psychiatry 7, 65-70 (1995) (With North et al.)

- 118 Is there a relationship between "heavy drinking" and HIV high risk sexual behaviors among general population subjects? The International Journal of the Addictions 30, 1453-1478 (1995). (With Shillington et al.)
- 119 Assessing gender interactions in the prediction of mortality in alcoholic men and women: a 20-year follow-up study. Alcoholism, Clinical and Experimental Research 19, 1162-1172 (1995). (With Lewis et al.)
- 120. Factors associated with excessive postoperative blood loss and hemostatic transfusion requirements a multivariate analysis in cardiac surgical patients Anesthesia and Analgesia 82, 13-21 (1996). (With Despotis et al.)
- 121. Comparing assessments of DSM-IV substance dependence disorders using CIDI-SAM and SCAN. Drug and Alcohol Dependence 41, 179-187 (1996). (With Compton et al.)
- 122 Effects of gender and comorbidity on problem drinking in a community sample. Alcoholism, Clinical and Experimental Research 20, 466-476 (1996) (With Lewis et al.)
- 123. Response of kaolin ACT to heparin: evaluation with an automated assay and higher heparin doses. Ann Thorac Surg 61, 795-799 (1996) (With Despotis et al.)
- 124. Gastrointestinal symptoms and psychiatric disorders in the general population findings from the NIMH epidemiologic catchment area project. Digestive Diseases and Sciences 41, 633-640 (1996). (With North et al.)
- 125. Aprotinin prolongs activated and nonactivated whole blood clotting time and potentiates the effect of heparin in vitro Anesthesia and Analgesia 82, 1126-1131 (1996). (With Despotis et al.)
- 126. Are the mentally ill homeless a distinct homeless subgroup? Annals of Chinical Psychiatry 8, 117-128 (1996). (With North et al.)
- 127. Increasing brain tumor rates: Is there a link to aspartame? Journal of Neuropathology and Experimental Neurology 55, 1115-1123 (1996) (With Olney et al.)
- 128. Structured and semi-structured assessment of ICD-10 substance dependence disorders: CIDI-SAM vs. SCAN. International Journal of Methods in Psychiatric Research 6, 285-293 (1996). (With Compton et al.)
- 129. Evaluation of a new point-of-care test that measures PAF-mediated acceleration of coagulation in cardiac surgical patients Anesthesiology 85, 1311-1323 (1996). (With Despotis et al.)
- 130 More effective suppression of hemostatic system activation in patients undergoing cardiac surgery by heparin dosing based on heparin blood concentrations rather than ACT. Thrombosis and Haemostasis 76, 902-908 (1996) (With Despotis et al.)
- 131. The effects of cytomegalovirus serology on graft and recipient survival in cadaveric renal transplantation: implications for organ allocation. American Journal of Kidney Diseases 29, 428-434 (1997) (With Schnitzler et al.)
- 132. Predictors of achieving stable housing in a mentally ill homeless population *Psychiatric Services* 48, 528-530 (1997) (With Pollio et al.)

- 133. Antithrombin III during cardiac surgery: effect on response of activated clotting time to heparin and relationship to markers of hemostatic activation Anesthesia and Analgesia 85, 498-506 (1997). (With Despotis et al.)
- 134. Nonpsychotic thought disorder. objective clinical identification of somatization and antisocial personality in language patterns Compr Psychiatry 38, 171-178 (1997) (With North et al.)
- 135. Changes in HIV/AIDS risk behaviors in drug users in St. Louis applications of random regression models J Drug Issues 27, 399-416 (1997). (With Gallagher et al.)
- 136. Whole blood heparin concentration measurements by automated protamine titration agree with plasma anti-Xa measurements J Thorac Cardiovasc Surg 113, 611-613 (1997) (With Despotis et al.)
- 137 Impact of cytomegalovirus serology on graft survival in living related kidney transplantation. implications for donor selection Surgery 121, 563-568 (1997). (With Schnitzler et al.)
- 138. Homeless street people report conservative sexual attitudes yet anticipate risky behavior. *Psychiatric Rehabilitation Journal* 20, 75-79 (1997) (With Song et al.)
- 139. One-year follow-up of survivors of a mass shooting. Am J Psychiatry 154, 1696-1702 (1997). (With North and Smith)
- 140. Cytomegalovirus and HLA-A, B, and DR locus interactions: impact on renal transplant graft survival. American Journal of Kidney Diseases 30, 766-771 (1997). (With Schnitzler et al.)
- 141 A comparison of clinical and structured interview diagnoses in a homeless mental health clinic. Community Mental Health Journal 33, 531-543 (1997). (With North et al.)
- 142. Cocaine users with antisocial personality improve HIV risk behaviors as much as those without antisocial personality. Drug and Alcohol Dependence 49, 239-247 (1998) (With Compton et al.)
- 143 The association of psychiatric diagnosis with weather conditions in a large urban homeless sample. Soc Psychiatry Psychiatr Epidemiol 33, 206-210 (1998). (With North et al.)
- 144. Agreement between DSM-III and DSM-III-R substance use disorders in *DSM-IV Sourcebook:* Volume 4, edited by T.A Widiger et al. American Psychiatric Association. 29-42 (1998) (With Cottler et al.)
- 145 Taking chances: problem gamblers and mental health disorders—results from the St. Louis Epidemiologic Catchment Area Study. Am J Public Health 88, 1093-1096 (1998) (With Cunningham-Williams et al.)
- 146. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion JAMA 280, 1055-1060 (1998). (With Grubb et al.)
- 147 Correlates of early onset and chronicity of homelessness in a large urban homeless sample. *J Nerv Ment Dis* 186, 393-400 (1998) (With North et al.)
- 148. Enrollment predictors of the special education outcome for students with SED Behavioral Disorders 23, 243-256 (1998). (With Mattison and Felix)
- 149 Substance abuse as a predictor of VA mental health care utilization among Vietnam veterans. J Behav Health Serv Res 26, 126-139 (1999) (With Virgo et al.)

- 150 Long-term stability of Child Behavior Checklist profile types in a child psychiatric clinic population J Am Acad Child Adolesc Psychiatry 38, 700-707 (1999). (With Mattison)
- 151 Use of point-of-care test in identification of patients who can benefit from desmopressin during cardiac surgery: a randomized controlled trial Lancet 354, 106-110 (1999) (With Despotis et al.)
- 152. A randomized trial of povidone-iodine compared with iodine tincture for venipuncture site disinfection: effects on rates of blood culture contamination. Am J Med 107, 119-125 (1999). (With Little et al.)
- 153. Psychiatric disorders among survivors of the Oklahoma City bombing. JAMA 282, 755-762 (1999). (With North et al.)
- 154. Adverse events in platelet apheresis donors: A multivariate analysis in a hospital-based program Vox Sang 77, 24-32 (1999). (With Despotis et al.)
- 155. Development of a new staging system for recurrent oral cavity and oropharyngeal squamous cell carcinoma. Cancer 86, 1387-1395 (1999). (With Lacy and Piccirillo)
- 156 The effects of psychiatric comorbidity on response to an HIV prevention intervention. Drug and Alcohol Dependence 58, 247-257 (2000). (With Compton et al.)
- 157. Applying artificial neural network models to clinical decision making. *Psychological Assessment* 12, 40-51 (2000). (With Price et al.)
- 158. The effect of epsilon-aminocaproic acid on HemoSTATUS and kaolin-activated clotting time measurements. Anesthesia and Analgesia 90, 1281-1285 (2000) (With Saleem et al.)
- 159. Substance dependence and other psychiatric disorders among drug dependent subjects: race and gender correlates American Journal on Addictions 9, 113-125 (2000) (With Compton et al.)
- 160 Psychiatric disorders among drug dependent subjects: are they primary or secondary? American Journal on Addictions 9, 126-134 (2000) (With Compton et al.)
- 161. Evidence for the involvement of two different MHC class II regions in susceptibility or protection in allergic bronchopulmonary aspergillosis J Allergy Clin Immunol 106, 723-729 (2000). (With Chauhan et al.)
- 162. Service use over time and achievement of stable housing in a mentally ill homeless population. *Psychiatric Services* 51, 1536-1543 (2000) (With Pollio et al.)
- 163 Problem gambling and comorbid psychiatric and substance use disorders among drug users recruited from drug treatment and community settings Journal of Gambling Studies 16, 347-376 (2000). (With Cunningham-Williams et al.)
- 164 Longitudinal use of the Teacher's Report Form in tracking outcome for students with SED. Journal of Emotional and Behavioral Disorders 9, 94-105 (2001) (With Mattison)
- 165 Effect of extended coverage of immunosuppressive medication by Medicare on the survival of cadaveric renal transplants. *American Journal of Transplantation* 1, 69-73 (2001). (With Woodward et al.)

- 166. The association of irritable bowel syndrome and somatization disorder. Ann Clin Psychiatry 13, 25-30 (2001) (With Miller et al.)
- 167. Remission from drug abuse over a 25-year period: patterns of remission and treatment use. Am J Public Health 91, 1107-1113 (2001). (With Price et al.)
- 168 Laboratory screening prior to ECT. The Journal of ECT 17, 158-165 (2001). (With Lafferty et al.)
- 169. Validation of a comorbidity education program. Journal of Registry Management 28, 125-131 (2001). (With Johnston et al.)
- 170. A prospective study of coping after exposure to a mass murder episode. Ann Clin Psychiatry 13, 81-87 (2001). (With North and Smith)
- 171. Twenty-five year mortality of US servicemen deployed in Vietnam: predictive utility of early drug use Drug and Alcohol Dependence 64, 309-318 (2001). (With Price et al.)
- 172. Photic and circadian expression of luciferase in MPeriod1-luc transgenic mice invivo. *Proc Natl Acad Sci USA* 99, 489-494 (2002). (With Wilsbacher et al.)
- 173. Psychiatric disorders in rescue workers after the Oklahoma City bombing. Am J Psychiatry 159, 857-859 (2002). (With North et al.)
- 174. Multivariate analysis to assess treatment effectiveness in advanced head and neck cancer. Arch Otolaryngol Head Neck Surg 128, 497-503 (2002). (With Patel and Piccirillo.)
- 175 The specificity of family history of alcohol and drug abuse in cocaine abusers. Am J Addict 11, 85-94 (2002). (With Compton et al.)
- 176 Coping, functioning, and adjustment of rescue workers after the Oklahoma City bombing. J Trauma Stress 15, 171-175 (2002). (With North et al.)
- 177. Three-year follow-up of survivors of a mass shooting episode J Urban Health 79, 383-391 (2002). (With North et al.)
- 178 Test of the plausibility of adolescent substance use playing a causal role in developing adulthood antisocial behavior J Abnorm Psychol 111, 144-155 (2002). (With Ridenour et al.)
- 179 Development of a new head and neck cancer-specific comorbidity index Arch Otolaryngol Head Neck Surg 128, 1172-1179 (2002) (With Piccirillo et al.)
- 180 The clinical picture of depression in preschool children J Am Acad Child Adolesc Psychiatry 42, 340-348 (2003). (With Luby et al.)
- 181. Personality and depressive symptoms. a multi-dimensional analysis. J Affect Disord 74, 123-130 (2003) (With Grucza et al.)
- 182 The role of psychiatric disorders in predicting drug dependence treatment outcomes. Am J Psychiatry 160, 890-895 (2003) (With Compton et al.)
- 183. Is there a progression from abuse disorders to dependence disorders? Addiction 98, 635-644 (2003) (With Ridenour et al.)

- 184 Modification of DSM-IV criteria for depressed preschool children. Am J Psychiatry 160, 1169-1172 (2003). (With Luby et al.)
- 185. Improved glucose tolerance with lifetime diet restriction favorably affects disease and survival in dogs J Nutr 133, 2887-2892 (2003) (With Larson et al.)
- 186 Evaluation of gene expression measurements from commercial microarray platforms *Nucleic Acids Res* 19, 5676-5684 (2003). (With Tan et al.)
- 187 Alterations in stress cortisol reactivity in depressed preschoolers relative to psychiatric and nodisorder comparison groups. Arch Gen Psychiatry 60, 1248-1255 (2003). (With Luby et al.)
- 188. Incorporation of gene-specific variability improves expression analysis using high-density DNA microarrays. *BMC Biol* 1, 1 (2003) (With Budhraja et al.)
- 189. Modeling service access in a homeless population J Psychoactive Drugs 35, 487-495 (2003) (With Pollio et al.)
- 190. Are rates of psychiatric disorders in the homeless population changing? Am J Public Health 94, 103-108 (2004). (With North et al.)
- 191. Comparison of comorbidity indexes for patients with head and neck cancer. *Med Care* 42, 482-486 (2004). (With Piccirillo et al.)

EXHIBIT1 LST	LST						
Run regressions by Residential Model,		month JANUAR	Chattanooga, JAN '	N1994	JAN1994-DEC2003		
The REG Procedure Model MODEL1 Dependent Variable	Procedure MODEL1 int Variable	gallons					
		Analysis of	is of Variance	ace.			
Source		70	Sum of Squares	Ŋ	Mean Square F	F Value	Pr > F
Model Error Corrected Total	Total	H 8 6	133 66182 38 01762 171 67944	133	66182 75220	28 13	0 0007
Root MSE Dependent Coeff Var	Mean	2 17995 148 97400 1 46331	R-Square Adj R-Sq		0 7786 0 7509		
		Parameter	ter Estimates	ø			
Variable	DF	Parameter Estimate	Standard Error	ndard Error	t Value		Pr > t
Intercept since_90	ત ન	159 79321 -1 27285	2 15	15337 24001	74 2 - 5 3	21 30	< 0001 0 0007

			le Pr > F	29 0 2898			Pr > t	< 0001 0 2898
003			F Value	1 2	4 1		t Value	14 85 -1 13
94-DEC2			Mean Square	160 77732 125 10621	0 1384 0 0307			
, JAN19		arlance	wm		uare R-Sq	ımates	Standard Error	11 04868 1 23144
tanooga		Analysis of Variance	Sum of Squares	160 77732 1000 84964 1161 62696	R-Square Adj R-Sq	Parameter Estimates	0,	
Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, FEBRUARY	gallons	Analys	DF	1 8 100 9 110	11 18509 152 18200 7 34981	Paramet	Parameter Estımate	164 04800 -1 39600
s by mor del, FE				ď	i ii			
ression	Proced (ODEL)			ed Tota	s ot Mean or		DP	
Run regressions by month C Residential Model, FEBRUARY	The REG Procedure Model MODEL1 Dependent Variable		Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, MARCH

The REG Procedure Model MODEL1 Dependent Variable gallons

	Pr > F	0 3966			Pr > [t]	< 0001 0 3966
	F Value	0 80				m 0
	[24				t Value	17 33 -0 90
	Mean Square	62444 81284	0 0911 -0 0225		n 5	
ė	ĸ	81 8	J Y		rd	74
Analysıs of Varıance	Sum of Squares	65 62444 654 50276 720 12720	R-Square Adj R-Sq	Parameter Estimates	Standard Error	8 93474 0 99583
SIS	, Ņ	654 654 720		ete	ыo	L 89
Analys	DF	1 8 6	9 04505 147 30000 6 14056	Param	Parameter Estimate	154 88097 -0 89188
		Total	Mean		DF	11
	Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, APRIL

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

le Pr > F	94 0 0034			Pr > t	< 0001 0 0034
n :e F Value	16 94	6792 6391		t Value	46 15 -4 12
Mean Square	209 90599 12 39296	00	83	Standard Error t	3 47743 0 38758
Sum of Squares	90599 14370 04969	R-Square Adj R-Sq	Parameter Estimates	Stan	W O
DF Sc	1 209 8 99 9 309	3 52036 146 91100 2 39626	Paramete	Parameter Estimate	160 46927 -1 59509
н		3 146 2		Ω	160
	d Total	r Mean		DF	ή -
Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept Since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, MAY

The REG Procedure Model MODEL1 Dependent Variable gallons

	Pr > F	0 3807			Pr > t	< 0001 0 8471 0 1985
	F Value	1 11				43 12 0 20 -1 42
	Mean Square	15 82684 14 23302	0 2411 0 0243		t Value	•
/агтапсе	of es		R-Square Adj R-Sq	timates	Standard Error	3 72757 2 84034 0 42181
Analysıs of Variance	Sum of Squares	31 65368 99 63116 131 28484		Parameter Estimates	er ite	195 137 111
Anal	DF	21.0	3 77267 155 50600 2 42606	Para	Parameter Estimate	160 73995 0 56837 -0 59911
		Total	Mean		ĐĒ	ннн
	Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, JUNE

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

Pr > F	0 1704			Pr > t	< 0001 0 3412 0 0692
F Value	2 30	6 Y		t Value	29 93 -1 02 -2 14
Mean Square	78 43842 34 05612	0 3969			
an so		R-Sguare Adj R-Sg	ımates	Standard Error	5 97683 4 84321 0 71285
Sum of Squares	156 87683 238 39286 395 26969	R-Sq Adj	Parameter Estimates		
DF	9 7 2	5 83576 166 95900 3 49533	Parame	Parameter Estimate	178 88060 -4 94530 -1 52821
	Total	Mean		DF	
Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, JULY

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

0 1914)r > t	00010 07980 6258
2 11				23 21 -2 05 -0 51
28699	0 3765		ħ	711
	are ?-Sq	ımates	standard Error	7 63011 4 82307 0 85886
50 57398 14 94933 55 52328	R-Sgu Adj	er Est	u,	
9 4 5	69925 99900 34988	Рагате	rameter stimate	177 05755 -9 87693 -0 43799
	176		Pan	177
Total	Mean		DF	ннн
Model Error Corrected	Root MSE Dependent Coeff Var		Variable	Intercept pds0 since_90
	2 250 57398 125 7 414 94931 59 cted Total 9 665 52329	2 250 57398 125 28699 7 414 94931 59 27847 9 665 52329 7 69925 R-Square 0 3765 176 99900 Adj R-Sq 0 1984 4 34988	2 250 57398 125 28699 7 414 94931 59 27847 9 665 52329 59 27847 7 69925 R-Square 0 3765 176 99900 Adj R-Sq 0 1984 4 34988 Parameter Estimates	d Total 2 250 57398 125 28699 7 414 94931 59 27847 9 665 52329 t Mean 176 99900 Adj R-Sq 0 1984 4 34988 Parameter Estimates Parameter Stimates Parameter Stimates Parameter Stimates

Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, AUGUST

The REG Procedure Model MODEL1 Dependent Variable gallons

	Pr v P	8 0 1446			Pr >	< 0001 0 0583 0 5527
	F Value	2 58				
	íu,				t Value	25 71 -2 26 -0 62
	Mean Square	123 41916 47 81238	0 4245		t V	0111
e G	0,	123		Ø	ndard Error	88767 27635 77309
rıan			are Sq	пасе	Standard Error	6 88 3 27 0 77
Analysis of Variance	Sum of Squares	83832 68669 52501	R-Square Adj R-Sq	Parameter Estimates	ί	
/B18	Ŋ	246 334 581		lete	H e	2 2 2
mal)	6.	0.0	6 91465 7 57700 3 89389	Paran	Parameter Estımate	177 08322 -7 40493 -0 48203
*	DP	(4 (- 0)	6 91465 177 57700 3 89389	-	Para	177 -7 -0
		Total	Mean		DF	анн
	Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

ι

Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, SEPTEMBER

The REG Procedure Model MODEL1 Dependent Variable gallons

.

	Pr > F	0 1979			Pr > t	< 0001 0 0826 0 7615
	r F Value	5 06	សី សិ		t Value	17 10 -2 02 -0 32
nce	Mean Square	211 20358 102 53354	0 3705 0 1906	ន	Standard Error t	10 08268 4 90807 1 11875
Analysis of Variance	Sum of Squares	422 40716 717 73480 1140 14196	R-Square Adj R-Sq	Parameter Estimates	Stan	10 0 4 9 1 1
Analysı	DF S	2 422 7 717 9 1140	10 12588 173 57800 5 83362	Paramete	Parameter Estimate	172 39616 -9 93592 -0 35308
		otal	1		3C	
	Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, OCTOBER

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

ъ ч я	0 1417			Pr > t	< 0001 0 0601 0 4636
F Value	2 62			t Value	23 68 -2 24 -0 78
Mean Square	132 71512 50 72145	0 4278 0 2643			
.,	132	Sq	ates	Standard Error	7.06205 2 50319 0 79181
Sum of Squares	265 43024 355 05016 620 48040	R-Square Adj R-Sq	Parameter Estımates	St	r 10 0
o, 9.	265 355 620	12190 48000 30378	rametez	eter nate	1713 0522 1388
OF	210	7 12190 165 48000 4 30378	Pa	Parameter Estimate	167 21713 -5 60522 -0 61388
	Total	Mean		DF	анн
Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, NOVEMBER

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

Pr v F	0 0000			Pr > t	<pre></pre>
F Value	26 43			t Value F	70 94 -6 70 -3 67
Mean Square	135 99028 5 14571	0 8831 0 8496			
is the		R-Square Adj R-Sq	umates	Standard Error	2 25712 0 72796 0 25189
Sum of Squares	271 98056 36 02000 308 00056		Parameter Estimates	ыø	w w o
DF	01 F O	2 26842 155 95200 1 45456	Рагаш	Parameter Estimate	160 12746 -4 87705 -0 92500
	Total	Mean		70	444
Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Residential Model, DECEMBER

	Pr > F	0 8151			Pr > t	< 0001 0 7944 0 5576
	F Value	0 21	C- 00		t Value	33 87 -0 27 -0 62
e U	Mean Square	4 27576 20 30855	0 0567 -0 2128	υ ι		48691 62181 49909
Analysis of Variance	Sum of Squares	55153 15983 71136	R-Square Adj R-Sq	Parameter Estimates	Standard Error	4 48 1 62 0 49
Analysıs	S DF Sq	2 8 7 142 9 150	4 50650 149 65200 3 01132	Parameter	Parameter Estimate	151 98697 -0 43900 -0 30724
	н	_	14.9 3.3		D ₄	151 -0 -0 -1
	4)	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		ole DF	Jept 1
	Source	Model Error Corre	Root MSE Dependent Coeff Var		Variable	Intercept pds0 since_90

EXHIBIT2.LST

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, JANUARY

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

7. v	9000 0			Pr > t	< 0001 0 0006
				Pr	v o
P Value	29 67				
₽4	61			lue	63 10 -5 45
Mean Square	8581 05615 289 19054	0 7876 0 7611		t Value	9 1
0,	8581 289	w tr	tes	Standard	16 79821 1 87226
Sum of Squares	8581 05615 2313 52429 10895	R-Square Adj R-Sq	Parameter Estımates	Sta	16
3, 9 <u>3</u>	8581 2313	00560 20600 74738	rameter	Parameter Estimate	1059 89467 -10 19867
DF	486		Pan	rame stın	9 0
		17 973 1		о С	105 -1
	Total	Mean		DF	пп
Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, FEBRUARY

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

< 0001	
57 81	
17903 309 69917	0 8784 0 8632
17903 59334 20381	R-Square Adj R-Sq
1 8 24 9 24	17 59827 1005 24000 1 75065
Model Error Corrected Total	Root MSE Dependent Mean Coeff Var
	1 17903 8 2477 59334 309 cted Total 9 20381

Parameter Estimates

Pr > t	< 0001 < 0001
t Value	65 03
Standard Error	17 38365 1 93751
Parameter Estimate	1130 45479 -14 73115
DF	пп
Variable	Intercept since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, MARCH

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

Pr > F	0 0004			Pr > t	< 0001 0 0004
F Value	33 91			t Value F	49 26 -5 82
Mean Square	18523 546 27319	0 8091 0 7852			
of es		R-Square Adj R-Sq	tımates	Standard Error	23 08745 2 57323
Sum of Squares	18523 4370 18556 22893		Parameter Estimates	er ce	97
DF	нωσ	23 37249 1009 92000 2 31429	Para	Parameter Estımate	1137 28297 -14 98388
	otal			DP	нн
Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, APRIL

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

Pr > P	0 16 0 6963			Pr > c
F Value	0 16			t Value
Mean Square	443 39864 2708 03164	0 0201		
-	443 2708		nates	Standard Error
Sum of Squares	443 39864 21664 22108	R-Square Adj R-Sq	er Esta	Σ
DP	1 443	52 03875 1029 91200 5 05274	Parameter Estimates	Parameter Estimate
	Total	Mean		DF
Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable

< 0001 0 6963 Pr > |t|

20 42 -0 40 t Value

Intercept since_90 Variable

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, MAY

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

	Pr > F	0 0028			Pr > t	<pre></pre>
	F Value	15 33				18 54 51
	Mean Square F	7661 82731 499 65266	0 8142 0 7611		t Value	53 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Ŋ	7661		ates	Standard Error	22 08571 16 82889 2 49921
	Sum of Squares	15324 56863 18821	R-Square Adj R-Sq	Parameter Estimates	SE	22 16 2
•		3497	22 35291 163 98400 2 10087	aramete	Parameter Estimate	1174 52202 -25 87607 -13 76249
	DF	0 L 0	22 35291 1063 98400 2 10087	Д	Para	1174 -25 -13
		Total	Mean		DP	
	Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, JUNE

	Pr v P	9 0 0214			Pr > t	<pre> 0001 2324 0 0074</pre>
	F Value	66 9	4 1		t Value	32 79 -1 31 -3 72
	Mean Square	10006 1431 04257	0 6664 0 5711			
ariance	ii n		R-Square Adj R-Sq	ımates	Standard Error	38 74355 31 39508 4 62090
Analysis of Variance	Sum of Squares	20013 10017 30030	R-Sq Adj	Parameter Estimates		
Analys	DF	2 1 6	37 82912 1133 17700 3 33832	Parame	Parameter Estımate	1270 58779 -41 04528 -17 20901
			1133		Д	127
		d Total	t Mean r		DF	т
	Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, JULY

The REG Procedure Model MODEL1 Dependent Variable gallons

	Pr > F	0 0572			Pr > t	<pre></pre>
	an re P Value	14 4 43 79	324 324		t Value	28 92 -2 39 -2 13
tance	Mean Square	9123 04844 2060 22779	re 0 5585 Sq 0 4324	lates	Standard Error t	44 98212 28 43367 5 06328
Analysis of Variance	Sum of Squares	18246 14422 32668	3 R-Square 0 Adj R-Sq 0	Parameter Estimates		
Anal	ÐΕ	21.0	45 38973 1234 52300 3 67670	Para	Parameter Estımate	1301 06042 -68 01669 -10 79666
		Total	Mean		DF	
	Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, AUGUST

Pr > F	0 0311			r > t	< 0001 0 2521 0 0118
F Value	5 93				23 20 -1 25 -3 38
	23006 71475	0 6290 0 5229		t Va	23 -1 -3
		are ·Sq	mates	tandard Error	62 02837 29 50583 6 96222
Sum of Squares	46011 27144 73155	R-Squ Adj R	er Esti	ι,	9 61
70	2 1 6	27130 73700 93536	Paramet	rameter stimate	8 86385 6 82483 3 52450
		62 1261 4		G E	1438 -36 -23
	l Total	Mean		DP	ннн
Source	Model Error Corrected	Root MSE Dependent Coeff Var		Variable	Intercept pds0 since_90
	Sum of Mean DF Squares Square P Value	Sum of Mean Squares Square F Value 2 46011 23006 5 93 7 27144 3877 71475 cted Total 9 73155	Sum of Mean DF Squares Square F Value 2 46011 23006 5 93 7 27144 3877 71475 6 7 73155 C Mean 1261 73700 Adj R-Sq 0 5229 r Mean 4 93536	Sum of Mean DF Squares Square F Value 2 46011 23006 5 93 7 27144 3877 71475 1 9 73155 62 27130 R-Square 0 6290 1261 73700 Adj R·Sq 0 5229 4 93536 Rectimates	Sum of Mean Squares Square F Value 2 46011 23006 5 93 7 27144 3877 71475 62 27130 R-Square 0 6290 1261 73700 Adj R-Sq 0 5229 4 93536 Parameter Estimates Parameter Stimates F Estimate Estimate

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, SEPTEMBER

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

Source		u	DF	Sum of Squares	•,	Mean Square	F.	F Value	Pr	Pr > F	
Model Error Corrected Total	Total		2 7 6	51567 24611 76179	3515	25784 3515 85789		7 33	0 0192	192	
Root MSE Dependent Mean Coeff Var	Mean	59 1243 4	59 29467 1243 64300 4 76782	R-Square Adj R-Sq	ט ט	0 6769 0 5846					
			Paramet	Parameter Estimates	re s						
Variable	DF	Par Es	Parameter Estimate	Sta	Standard Error	t Value	lue	P.	Pr > t	교	
Intercept pds0 since_90	ннн	1374 -77 -19	1374 82313 -77 34866 -19 26399	289	59 04166 28 74043 6 55115	23	23 29 -2 69 -2 94		< 0001 0 0310 0 0217	001 310 217	

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, OCTOBER

	Pr > F	0 0057			Pr > t	<pre></pre>
	F Value	11 80				32 99 -3 66 -3 67
	Mean Square	18732 1588 00178	0 7712 0 7058		t Value	32
ırıance			lare !-Sq	mates	Standard Error	39 51485 14 00633 4 43050
Analysis of Variance	Sum of Squares	37465 11116 48581	R-Square Adj R-Sq	Parameter Estimates	o,	
Analys	DF	0 1 0	39 84974 1196 89300 3 32943	Parame	Parameter Estımate	1303 44835 -51 23043 -16 27876
			35 1196			130
		l Total	Mean		DP	
	Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, NOVEMBER

The REG Procedure Model MODEL1 Dependent Variable gallons

Analysis of Variance

Pr v F	0 0013			Pr > t	<pre></pre>
F Value	19 77				48 98 -4 41 -5 02
Mean Square	12037 99525	0 8496 0 8066		t Value	84 5 - 5
01	608		ates	Standard Error	24 55493 7 91937 2 74031
Sum of Squares	24074 4262 96675 28337	R-Square Adj R-Sq	Parameter Estımates	St	24
7 7	2 7 426	24 67783 1112 34500 2 21854	Paramete	Parameter Estimate	1202 78612 -34 93546 -13 74733
		24 1112 2		Pa	1202
	l Total	Mean		न्त	ннн
Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

Run regressions by month Chattanooga, JAN1994-DEC2003 Commercial Model, DECEMBER

F Value Pr > F	11 31 0 0064			Pr > t	< 0001 0 1584 0 0024
ž.	Ħ			Value	46 28 -1 58 -4 63
Mean Square	6703 60048 592 69832	0 7637		t Va	46 1. 4.
••	6703 592	are Sq	nates	Standard Error	24 23954 8 76146 2 69620
Sum of Squares	13407 4148 88821 17556	R-Square Adj R-Sq	Parameter Estimates	รั	22 8 6
DF	2 7 414 9	24 34540 1024 34200 2 37669	Paramet	Parameter Estımate	1121 75981 -13 83307 -12 48619
н		24 1024 2		Par	1121 -13 -12
	Total	Mean		DP	
Source	Model Error Corrected Total	Root MSE Dependent Mean Coeff Var		Variable	Intercept pds0 since_90

		Projections of		Residential Water Utilization, Gallons per Day, Tennessee-American	· Utilization	, Gallons	oer Day, Te	nnessee-A	merican	
	Slope of	Slope of		30-yr Avg	Days	2003	2004	2005	2006	2007
Month	PDS0	SINCE_90	Intercept	PDS0		Gal/Day	Gal/Day	Gal/Day	Gal/Day	Gal/Day
Jan	0	-1 27285	159.7932	-0.71567	31	143.25	141.97	140.70	139.43	138.15
Feb	0	-1.39600	164.0480	-0.85033	28	145.90	144.50	143.11	141.71	140.32
Mar	0	-0.89188	154.8810	-0.86533	31	143.29	142.39	141.50	140.61	139.72
Apr	0	-1 59509	160.4693	-0.78567	30	139.73	138.14	136.54	134.95	133 35
May	0.56837	-0.59911	160 7400	-0.55900	31	152.63	152.03	151.44	150.84	150.24
Jun	-4.94530	-1.52821	178.8806	-0.60067	30	161.98	160.46	158.93	157.40	155.87
Jul	-9 87693	-0.43799	177.0576	-0.81367	31	179.40	178.96	178.52	178.09	177.65
Aug	-7 40493	-0.48203	177 0832	-0.86433	31	177.22	176.74	176.25	175.77	175.29
Sep	-9.93592	-0.35308	172.3962	-0.66800	30	174.44	174.09	173.74	173.38	173.03
Oct	-5.60522	-0 61388	167.2171	-0.74800	31	163.43	162.82	162.20	161.59	160.97
Nov	-4.87705	-0.92500	160.1275	-0.73233	30	151.67	150.75	149.82	148.90	147.97
Dec	-0 43900	-0.30724	151.9870	-0.67500	31	148.29	147.98	147.67	147.37	147.06
			Annual projections	jections:		156 86	155.97	155.14	154 28	153 42
TNAM2004 XLS										

Slope of Month PDS0	F Slope of SINCE_90								
onth	8 0000			9	2000	7000	2005	2006	2002
onth	σ		SU-yr Avg	Days	2002	4004	£003	2002	2007
		Intercept	PDS0		Gal/Day	Gal/Day	Gal/Day	Gal/Day	Gal/Day
		1059.895	-0.71567	31	927.31	917.11	906.91	896.72	886.52
		1130.455	-0.85033	28	938.95	924.22	909.49	894.76	880.03
		1137 283	-0.86533	31	942.49	927.51	912.52	897.54	882.56
	ļ	1049.618	-0.78567	30	1,019.48	1,017.16	1,014.84	1,012.52	1,010.21
		1174.522	-0.55900	31	1,010.07	996.31	982.55	968.79	955.02
Jun -41.0453	53 -17.2090	1270 588	-0.60067	30	1,071.53	1,054.32	1,037.11	1,019.90	1,002.69
Jul -68.0167	37 -10.7967	1301 060	-0.81367	31	1,216.05	1,205.25	1,194.45	1,183.66	1,172.86
Aug -36.8248	18 -23.5245	1438.864	-0.86433	31	1,164.87	1,141.35	1,117.83	1,094.30	1,070.78
Sep -77.3487	37 -19.2640	1374.823	-0.66800	30	1,176.06	1,156.80	1,137.53	1,118.27	1,099.00
Oct -51.2304	16.2788	1303.448	-0.74800	31	1,130.14	1,113.87	1,097.59	1,081.31	1,065.03
Nov -34.9355	55 -13.7473	1202.786	-0.73233	30	1,049.66	1,035.91	1,022 16	1,008.41	994.67
Dec -13.8331	31 -12.4862	1121 760	-0.67500	31	968.78	956.29	943.80	931.32	918.83
-									
		Annual pro	al projections:		1,051.90	1,037.48	1,023.67	1,009.56	995.44
TNAM2004 XLS									

~